Тайны вселенной
01. Что такое темное вещество?
Эта загадка известна с 30-х годов прошлого века. Уже тогда швейцарский астроном Фриц Цвикки пришел к выводу, что реальная масса скоплений галактик гораздо больше, чем масса всего того, что можно было наблюдать в них непосредственно в телескопы. Все указывало на то, что в космосе кроме привычного для нас вещества есть еще нечто, обладающее массой, но нами невидимое. Эту загадочную субстанцию принято называть «темным веществом».
Вещество-невидимка составляет примерно 25% всей материи Вселенной. Проблема в том, что частицы темного вещества очень слабо взаимодействуют друг с другом и с обычным веществом. Настолько слабо, что это взаимодействие до сих пор никак не удавалось зафиксировать, — мы видим только результат гравитационного влияния этих частиц.
Сегодня даже консервативно настроенные ученые полагают, что в течение ближайшего десятилетия удастся «ухватить за бороду» часитицы темной материи. Самое заманчивое — поймать их в лаборатории. Подобные эксперименты проходят в глубоких шахтах, чтобы уменьшить число помех из-за частиц космических лучей.
Оптимисты считают, что новые данные о темном веществе можно будет получить на ускорителях, например на Большом адронном коллайдере (LHC). Однако, на мой взгляд, это куда менее вероятно.
Сами астрофизики тоже не сидят сложа руки. Частицы темного вещества могут аннигилировать (по-простому — взаимоуничтожаться). В результате возникает гамма-излучение, а также появляются пары вполне «нормальных» частиц и античастиц, например электрон и позитрон. Астрономы с помощью наземных и космических устройств пытаются поймать гамма-сигналы и потоки античастиц, которые могут быть следами темной материи.
02. Что такое темная энергия?
Последние сто лет известно, что Вселенная расширяется. Обсуждалась и возможность ускоренного расширения, но особенно популярной эта тема стала с 1998 года. Тогда наблюдения далеких сверхновых показали, что галактики разбегаются друг от друга со все большей и большей скоростью. Этот результат не вызывает сомнений. Непонятно только, как его объяснить.
Наиболее популярная гипотеза состоит в том, что ответственность за ускоренное расширение несет неизвестная нам «темная энергия», составляющая ни много ни мало 70% плотности Вселенной.
Что это такое и какими свойствами она обладает, физики толком объяснить не могут. Просто не знают. Но именно это нечто и заставляет Вселенную расширяться все быстрее и быстрее.
Пока единственный способ изучать темную энергию — это анализировать подробности эволюции Вселенной, как она расширялась в разные эпохи. Есть основания полагать, что вслед за короткой начальной стадией очень быстрого расширения (инфляции) последовал период длительностью примерно 5–7 млрд лет, когда Вселенная расширялась замедленно. Но потом торможение сменилось ускорением, которое продолжается по сей день. Почему и как это происходит? Какие законы регулируют действие темной энергии? Похоже, что скоро мы будем знать об этом несколько больше.
Отличный исследовательский материал тут представляют взрывы далеких сверхновых. Именно по ним можно определять темпы расширения в разные моменты времени, ведь далекие объекты мы видим такими, какими они были в прошлом.
03. Была ли стадия инфляции?
Наша Вселенная началась со стадии инфляции. В самый первый момент своего существования она с огромной скоростью расширялась под влиянием некоего особого физического поля. Такова стандартная гипотеза.
Однако в последнее время некоторые физики склоняются к идее, что такой стадии не было. Расширение Вселенной шло примерно теми же темпами, что и сейчас (естественно, со всеми оговорками про эволюцию, ускоренное и замедленное расширение). Решить, кто прав, помогут наблюдения.
Впрочем, на мой взгляд, существенный прогресс здесь в ближайшие десять лет маловероятен. Даже если он и произойдет, это случится благодаря физике элементарных частиц, а не астрофизике. В любом случае надо изучать все, что осталось нам на память от самых ранних стадий развития Вселенной: реликтовое излучение и первичные гравитационные волны.
04. Какими были свойства первых звезд и галактик?
История Вселенной изучена неравномерно. Мы точно знаем, что произошло спустя 300 тыс. лет после Большого взрыва. Именно в этот момент вещество стало потихоньку «отклеиваться» от излучения. А вот что было потом?
Что тогда творилось в космосе, совершенно непонятно. Наступают «темные времена». Известно только, что первые звезды загораются спустя примерно сотню миллионов лет после 300-тысячелетнего рубежа. Потом постепенно начинают расти первые галактики. Как это было? Какие процессы к этому привели? Интересно было бы на это посмотреть…
Ответив на вопросы, связанные с рождением и свойствами первых звезд, можно будет разобраться и с тайной возникновения сверхмассивных черных дыр в центрах галактик. Зародыши этих монстров могли возникать из первых очень массивных звезд. А могли и в результате коллапса больших облаков газа. Как было на самом деле, должны прояснить наблюдения.
05. Какова природа черных дыр?
Все любят черные дыры. Если кто-то и боится, то тоже любя. Всем интересно. И первый вопрос: а есть ли они на самом деле? Вообще-то большинство экспертов не сомневаются в их существовании. Но парадокс в том, что наблюдать их в принципе нельзя. Даже факт их наличия во Вселенной подтверждается только косвенными экспериментами.
У черных дыр нет поверхности в привычном смысле этого слова. То, что ограничивает их пределы, принято называть горизонтом событий. О том, что происходит за этим горизонтом, мы принципиально судить не можем. Там черная дыра.
Изнутри черной дыры за горизонт не прорваться. Ни вещество, ни излучение — не может выйти из черной дыры обратно, если что туда провалилось, то уже навсегда. Доказать существование этого горизонта не так-то просто.
06. Откуда летят космические лучи сверхвысоких энергий?
На Земле мы строим гигантские дорогие машины, чтобы разгонять частицы до высоких энергий. Такие штуки очень полезны. Но между тем природа располагает какими-то механизмами, которые позволяют ей сообщать частицам гораздо большие энергии.
Примерно раз в год на Землю, на территорию размером с крупный город, из космоса прилетает по одной частице с энергией в сто миллионов раз большей, чем максимальная энергия частиц, достижимая на Большом адронном коллайдере. Получается, что за время существования Земли на нее попало более миллиона миллиардов таких частиц, что, кстати, показывает, что ничего страшного при этом не происходит.
В последние годы удалось показать, что эти частицы прилетают из тех областей Вселенной, которые лежат за пределами нашей галактики. Пока мы точно не знаем, какие объекты являются их источниками. Основными подозреваемыми считают активные ядра галактик. Но каким образом частицы ускоряются до таких колоссальных энергий? Этого мы тоже не знаем.
07. Как взрываются сверхновые?
Большие звезды (как минимум раз в десять тяжелее Солнца) заканчивают свою жизнь торжественным взрывом. Исчерпав запасы термоядерного горючего, ядра таких звезд начинают стремительно сжиматься. Происходит взрыв, и их периферийные области теряют связь с центром и стремительно удаляются от него, при этом выделяется огромная энергия. Со стороны это выглядит как колоссальная вспышка — ярче целой галактики. У астрофизиков это принято называть вспышкой сверхновой.
Пока расчеты не позволяют как следует разобраться в механизме этих катаклизмов. А хочется. Ведь почти все атомы тяжелее железа образовались именно в результате таких взрывов. В каждом из нас есть немало атомов, побывавших в пламени вспышки сверхновой.
Мы видим много вспышек сверхновых и используем их, например, для определения космических расстояний. Но вот поймать сигнал из недр взрывающейся звезды очень трудно. Единственный способ — ловить нейтрино. Эта частица практически не взаимодействует с остальным веществом. Для нее вся Вселенная прозрачна. Поэтому если мы и можем надеяться хоть на какое-то послание из глубины сверхновой, это может быть только нейтрино.
Дело это трудное. Лишь однажды, в 1987 году, когда вспышка произошла в близкой карликовой галактике — Большом Магеллановом Облаке, — удалось поймать несколько нейтрино. Но это слишком мало, чтобы сильно продвинуться в решении загадки.
08. Что находится внутри нейтронных звезд?
Самое плотное вещество во Вселенной существует в недрах нейтронных звезд. После взрыва сверхновой звездное ядро продолжает сжиматься по причине всем знакомой гравитации. Сжимается оно до тех пор, пока не превратится в шарик размером около 20 км в диаметре, но с массой как у Солнца.
Средняя плотность такого объекта равна примерно плотности атомного ядра, а в центре превосходит ее раз в десять. В лабораторных условиях достичь такого состояния вещества невозможно. Поэтому и законы, описывающие его, мы понимаем плохо. Известно только, что все вещество, которое образует такой шарик, существует там исключительно в виде нейтронов. Только эти частицы «выживают» при подобных температурах и плотностях. Собственно, поэтому такие звезды и называются нейтронными.
Можно предположить и следующую стадию развития событий. При очень высокой плотности материя переходит в новое состояние, когда кварки уже не заперты внутри протонов, нейтронов или других частиц.
Такое состояние вещества называется кварковым. Можно предположить, что при слиянии нейтронных звезд, когда «клочки летят по закоулочкам», в межзвездное пространство выбрасываются комочки этого самого кваркового вещества — страпельки. Их можно пытаться поймать, например, изучая космические лучи.
09. Сколько существует планет земного типа?
Самый большой прогресс в астрофизике мы видим в изучении экзопланет, то есть планет, которые вращаются вокруг других звезд. Счет им идет на сотни, хотя первую открыли менее 20 лет назад.
В ближайшие годы можно рассчитывать даже на обнаружение планет земного типа с кислородной атмосферой, которые вращаются на таком расстоянии от своей звезды, что вода там находится в жидком состоянии. То есть планет, пригодных для жизни.
10. Как объяснить «аномалию пионеров»?
Кроме естественных космических объектов есть еще и искусственные. Например, спутники. С ними тоже не все ясно.
Создатели спутников просчитывают их скорости и траектории с максимальной точностью. Учитываются все известные гравитационные воздействия и вообще все, с чем может столкнуться спутник в открытом космосе. И тем не менее некоторые из них ведут себя странно. Наиболее известна так называемая аномалия «Пионеров».
Американские спутники «Пионер-10» и «Пионер-11», летящие за пределы Солнечной системы, замедляются чуть сильнее, чем должно быть по расчетам. Почему? Споры об этом идут уже много лет. С другой стороны, несколько спутников (NEAR, Rosetta, Galileo) приобрели «лишнюю» скорость после гравитационных маневров около Земли.
Наиболее консервативное объяснение состоит в том, что в случае «Пионеров» есть неучтенное тепловое излучение самого аппарата. Периодически появляются работы, в которых авторы показывают, какую часть эффекта можно объяснить таким образом. Понять природу всех пролетных аномалий пока не получается.
Возможно, понадобятся специальные спутники или модификации планируемых аппаратов, которые смогут внести ясность. Скорее всего, никакой «новой физики» для объяснения подобных эффектов не понадобится, но кто знает?